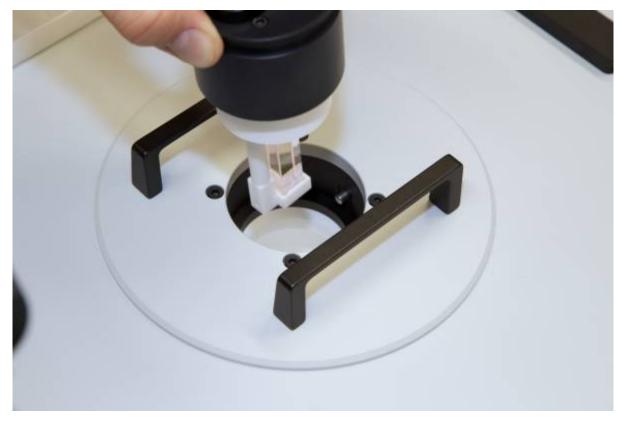
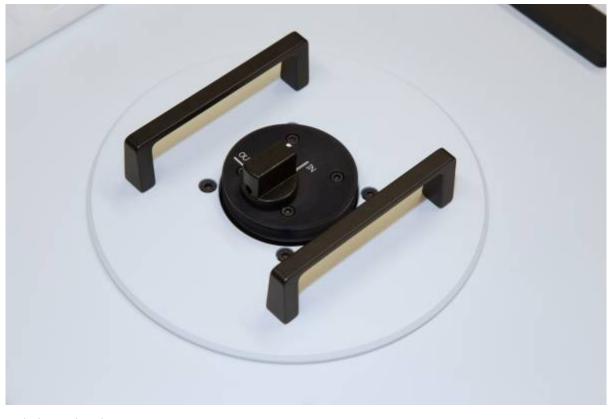


Measuring the Quantum Yield with the Integrating Sphere Assembly for the FluoTime 300


Note: The integrating Sphere is made from Spectralon[™]. While this material provides excellent spectral reflectivity and spectral flatness it is also very sensitive to contamination. Due to the porous nature of its surface, it collects impurities easily. Any impurity will change the reflectivity of the inner walls of the integrating sphere and thus will influence the measurements. Therefore, handle the integrating sphere carefully avoiding any exposure to dust or other impurities. Avoid spilling sample into the sphere or contamination of the sample holder.

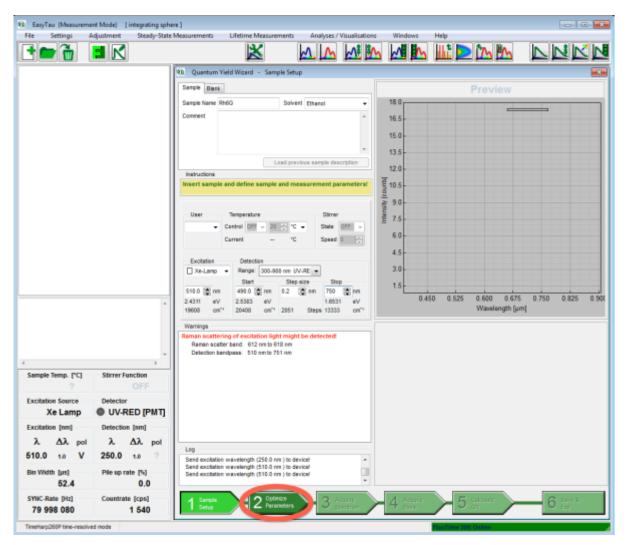
Step-by-Step


• Mount the integrating sphere carefully. Make sure you do not hit any optical elements inside the FluoTime 300. The integrating sphere assembly has an indexed lid to ensure proper orientation.

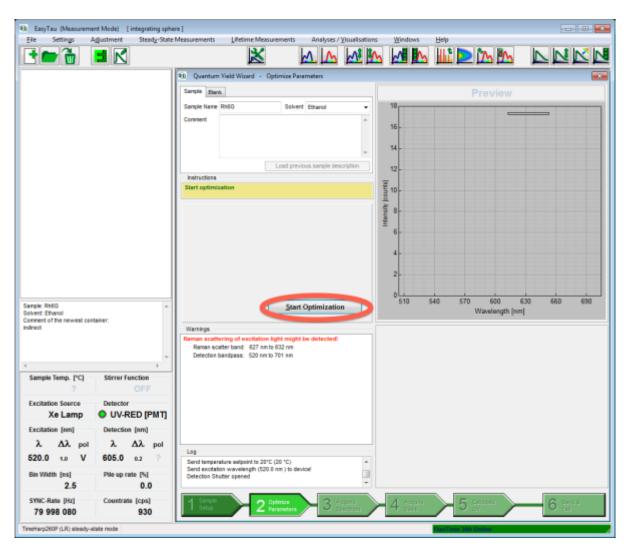
- Use the provided sample holder stand while inserting the sample into the sample holder.
- Put the sample holder into the IN-position.
- Put the sample holder into the integrating sphere

• Select either IN or OUT position

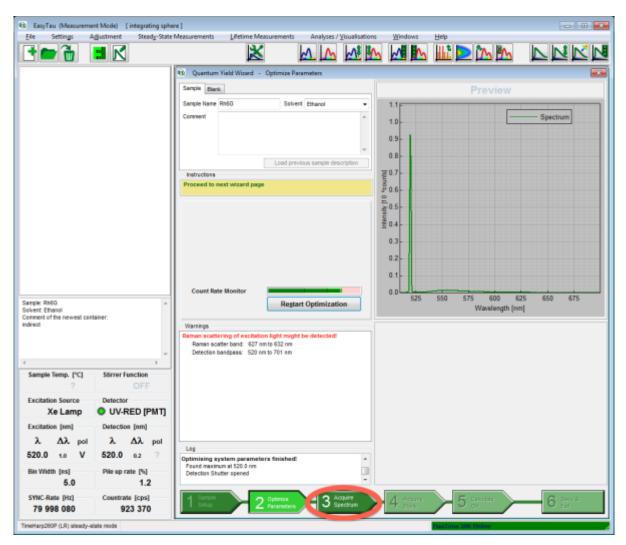
Note: The sample holder has two indexed positions. When in the IN position, the excitation beam will directly hit the sample, when in the OUT position the sample will only be illuminated indirectly (by diffuse light originating from the sphere's surface).

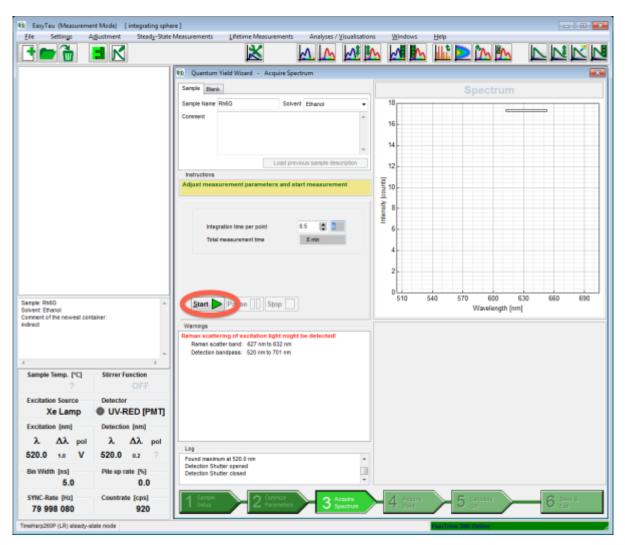

- Switch on FluoTime 300.
- Start the EasyTau Software.
- Open or create a workspace.

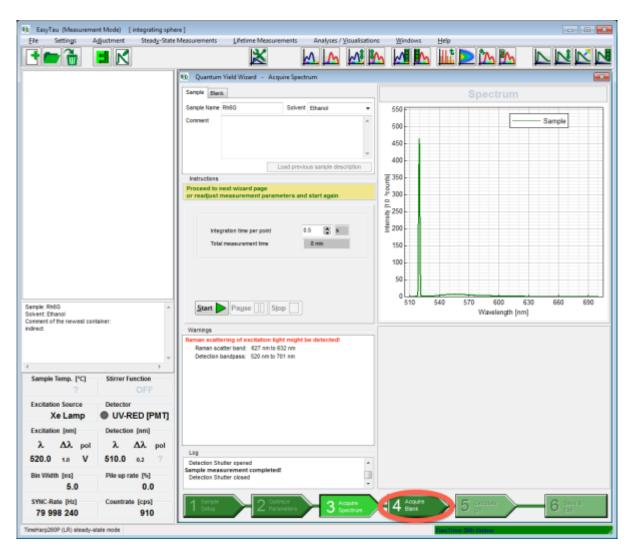
• Start the Quantum Yield Wizard.


B EasyTau (Measurement Mode) [integrating sph			
File Settings Adjustment Steady-Stat	e Measurements Lifetime Measurements Analyses / Visualisations		NN
	2		
	90. Quantum Yield Wizard - Sample Setup		
	Sample Blank Sample Name Rh6G Solvert Ethanol •	Preview	
	Sample Name Rh6G Solvent Ethanol • Comment		
		16.5	
		15.0	
	·	13.5-	
	Load previous sample description	12.0	
	Insert sample and define sample and measurement parameters!	7 10.5 -	
		105- 	
	User Temperature Stirrer	2 7.5	
	Control Off - 21 + C - State Off -	6.0	
	Current - 'C Speed I 🚊		
	Exolution Detection	4.5	
	Xe-Lamp - Range: 300-900 nm UV-RE - Start Step size Stop	3.0	
	Start Step size Stop	1.5	
A.	2.4311 eV 2.5383 eV 1.8531 eV 19608 cm ⁻¹ 20408 cm ⁻¹ 2051 Steps 13333 cm ⁻¹	0.450 0.525 0.600 0.675 0.750 0. Wavelength [µm]	825 0.900
	Warnings		
	Raman scattering of excitation light might be detected! Raman scatter band: 612 nm to 618 nm Detection bandpiasa: 510 nm to 751 nm		
<			
Sample Temp. [*C] Stirrer Function ? OFF			
Excitation Source Detector Xe Lamp UV-RED [PMT]			
Excitation [nm] Detection [nm]			
λ Δλ pol λ Δλ pol			
510.0 1.0 V 250.0 1.0 ?	Log Send excitation wavelength (250.0 nm) to device!		
Bin Width [µs] Pile up rate [%] 52.4 0.0	Send excitation wavelength (510.0 nm) to device! Send excitation wavelength (510.0 nm) to device!		
SYNC-Rate [Hz] Countrate [cps] 79 998 080 1 540	1 Series 2 Optimize 3 Accurs	4 some 5 av	115 Å. 2

• On the first page of the Quantum Yield Wizard enter the sample name, solvent and measurement conditions. Make sure the starting wavelength is **below** the excitation wavelength.

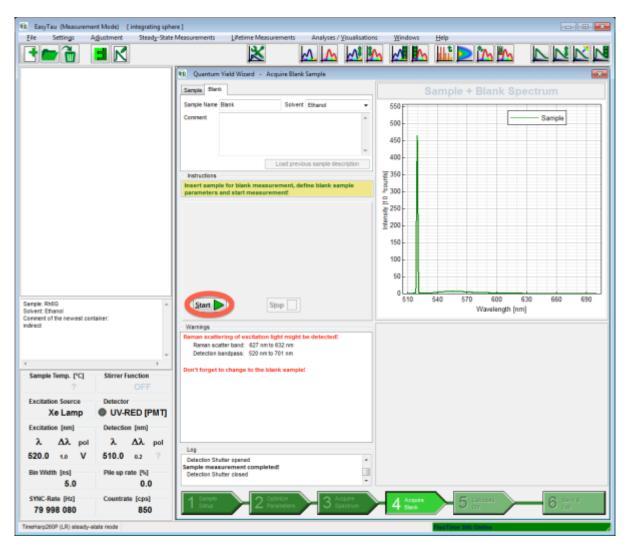

Note: In this example with Rh6G as the sample we will use 510nm for excitation, therefore the spectral range will be from 500 nm to 700 nm.


• Click the second step "Optimize Parameters" and start the optimization by clicking "Start Optimization".

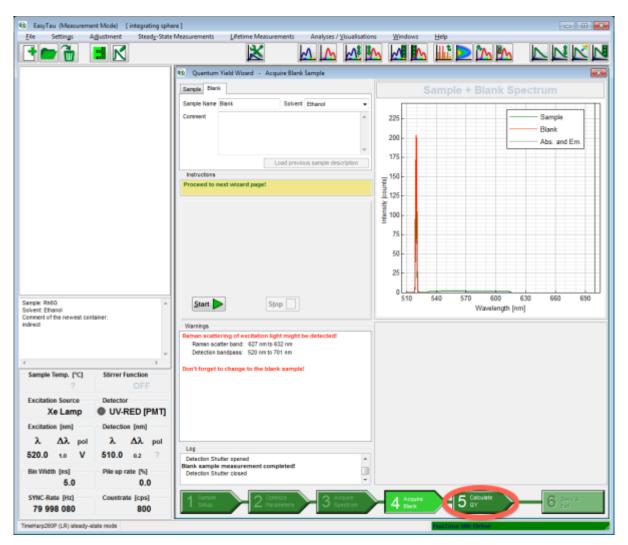

• After the optimization has successfully finished, click the "Acquire Spectrum" step and review the measurement conditions. If necessary tweak the acquisition time.

• Click the "Start" button and wait for the spectrum to be recorded.

• When finished, click the "Acquire Blank" step.

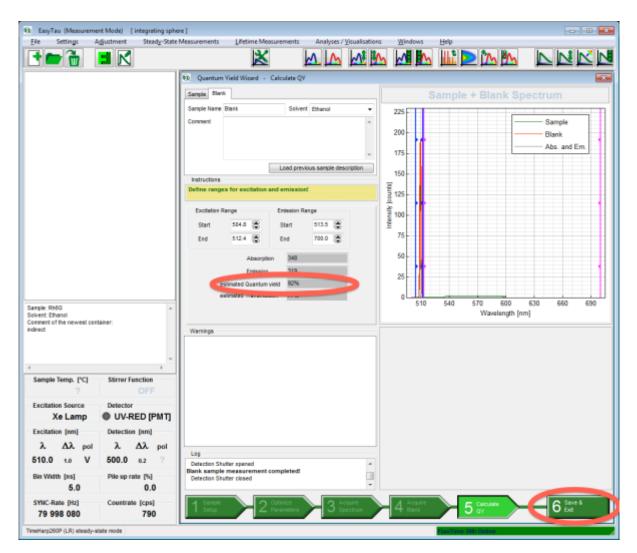

- Before removing the sample holder make sure it is in the IN-Position.
- Insert the blank sample into the sample holder.

Note: The blank should have the same geometry as the sample. In our example this is a identical cuvette filled with the solvent (ethanol).


- Before inserting the sample holder into the integrating sphere put the sample holder into the IN-position.
- Select either IN or OUT position.

Note: The position should be the same as for the sample measurement.

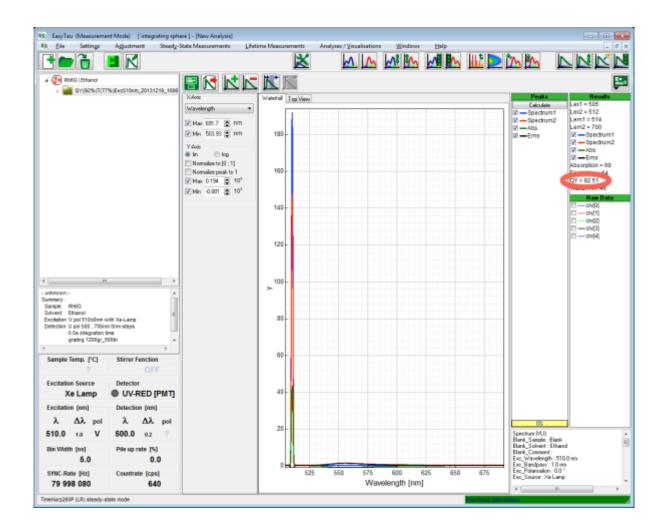
• Click the "Start" button.


• After the acquisition of the blank spectrum has finished click the "Calculate QY" button.

• If necessary adjust the limits for excitation and emission.

Note: The values shown in the wizard may not be precise. The precise values are calculated when you reopen the saved QY measurement using the plot tool – see below.

• Click "Save & Exit" to store the measurement.



Note: The name of the data file will contain the approximate QY value.

• Select the measurement and click the plot tool to open the QY measurement to get the precisely calculated QY.

	ent Mode) [integrating sphere]					-0-
Ele Settings	Agjustment Steady-State Me	assurements Lifetime Measurements	Analyses / Visualisations	Windows	Help	
			WT TH WE BR	M	🏨 ⋗ 🔊 🖗	
A- PRACE Ethanol						
QY(92%)T(7)	7%)Exc510nm_20131219_1606					
<n - unknown - Summery :</n 	,					
unknown - Summery : Sample Rh6G	,					
unknown - Summery : Sample Rh6G Solvent Ethanol Excitation V pol 510±0nm v	with Xe-Lamp					
unknown - Sample Rh6G Solvent Ethanol Excitation V pol 510±0mm v Detection U pol 500700m	with Xe-Lamp					
usknown - Sample Rh6G Solvent Ethanol Excitation V pol 510±0mm / Detection U pol 500700 0.5s integration grating 1200gr_	with Xe-Lamp III III IIII IIII IIIIIIIIIIIIIIIIII					
usknown - Sample Rh6G Solvent Ethanol Excitation V pol 51020nm - Detection U pol 500700n 0.55 integration grating 1200gr_1	with Xe-Lamp E m Gan steps time 500sl v					
unknown - Sample Rh6G Solvent Ethanol Excitation V pol 510±0mm / Detection U pol 500700 0.5s integration grating 1200gr_	with Xe-Lamp in Gam steps time 5000/ v Stirrer Function					
unknown - Summary : Sanjele Rr60 Salvert Ethanol Exclataios V pol 500.00m 0.55 rickgration grating 1205gr_1 - Sample Termp. [*C] - ?	with Xe-Lamp III III IIII IIII IIIIIIIIIIIIIIIIII					
unknown - Sampter / Bred Salvet Ethanal Excitator V pol 500 mm 0.5 strepaton 9 sampte Temp. [*C] - ? Excitation Source	with Xe-Lamp in Sam steps time 5000/ v Stirrer Function OFF Detector					
unknown - Summary : Sample Rr60 Salvert Ethanol Exclusion V pol 500, 700m 0.55 ridegration grating 1205yr_J 4 Sample Termp, [*C] 2 Excitation Source Xe Lamp	with Xe-Lamp in Sen steps time 50001 * Stirrer Function OFF Detector • UV-RED [PMT]					
unknown - Sampter / Bred Salvet Ehnand Exclatat V pol 51058m 0.5 strepaton 9 sampte Temp, [*C] - 2 Excitation Source	with Xe-Lamp in Sam steps time 5000/ v Stirrer Function OFF Detector					
unknown - Sample Red Salvet Ehanol Exclusion V pol 500, 700m 0.55 ritegration grating 1203gr_j C Sample Temp, [*C] 2 Excitation Source Xe Lamp	with Xe-Lamp in Sen steps time 50001 * Stirrer Function OFF Detector • UV-RED [PMT]					
unknown - Sample RHO Salvert Ethanol Exclates V pol 51020am Delection U pol 500.700m (5.5 ritegration grating 1203gr) Sample Temp. [*C] 2 Excitation Source Xe Lamp Excitation [sm]	with Xe-Lamp in Jan steps time 500ul * Stirrer Function OFF Detector OUV-RED [PMT] Detection (nm)					
unknown - Summery : Sample Find Salvert Ehansi Exclatate V pol 510:00m Detection U pol 560.70m Sample Terms, [°C] ? Excitation Source Xe Lamp Excitation [sm] λ Δλ pol 510.0 1.0 V	with Xa-Lamp in Jam steps time 5000					
unknown - Sampte Pred Salvet Ehansi Excitator V pol 510:00m Detection U pol 540.70m (S.S. integration grating 1200gr.) Sample Temp. [*C] ? Excitation Source Xe Lamp Excitation [am] λ Δλ pol 510.0 1.0 V Bin Width [ms]	with Xe-Lamp in Jam steps time 50000 , , Stirrer Function OFF Detector OUV-RED [PMT] Detection [nm] λ Δλ pol 500.0 o.2 ? Pile up rate [%]					
unknown - Summery : Sample Red Sabert Ehansi Exclatate V pol 510:00m Detection U pol 560.70m Sample Temp. [°C] ? Excitation Source Xe Lamp Excitation [sm] λ. Δλ. pol 510.0 1.0 V Bin Width [ms] 5.0	with Xe-Lamp in dam steps time 50000 , , Stirrer Function OFF Detector UV-RED [PMT] Detection [nm] λ Δλ pol 500.0 o.2 ? Pile up rate [%] 0.0					
unknown - Summary : Sample Pred Salvet Ehansi Exclatat V 20131020m 0.55 irlegaraton grating 1203gr_1 C Sample Temp. [°C] ? Excitation Source Xe Lamp Excitation [am] λ Δλ pol 510.0 1.0 V Bin Width [ms]	with Xe-Lamp in Jam steps time 50000 , , Stirrer Function OFF Detector OUV-RED [PMT] Detection [nm] λ Δλ pol 500.0 o.2 ? Pile up rate [%]					

• The plot window will open, allowing you to examine the spectra in more detail and also giving you the possibility to (re)adjust the limits for the calculation. The QY is displayed in % in the results window.

Copyright of this document belongs to PicoQuant GmbH. No parts of it may be reproduced, translated or transferred to third parties without written permission of PicoQuant GmbH. All information given here is reliable to our best knowledge. However, no responsibility is assumed for possible inaccuraciesor omissions. Specifi cations and external appearances are subject to change without notice.

PicoQuant GmbH Rudower Chaussee 29 (IGZ) 12489 Berlin Germany P +49-(0)30-1208820-89 F +49-(0)30-1208820-90 info@picoquant.com www.picoquant.com